Craft Framework

 

Initial Framework

The initial framework for a craft approach to HCI follows. (Read more…..)

Read More.....

The initial framework for a craft approach to HCI follows. The key concepts appear in bold.

The framework for a discipline of HCI as craft has a general problem with a particular scope. Research acquires and validates knowledge, which supports practices, solving the general problem.

Key concepts are defined below (with additional clarification in brackets).

Framework: a basic supporting structure (basic – fundamental; supporting – facilitating/making possible; structure – organisation).

Discipline: an academic field of study/branch of knowledge (academic – scholarly; field of study – subject area; branch of knowledge – division of information/learning).

HCI: human-computer interaction (human – individual/group; computer – interactive/embedded; interaction – active/passive).

Craft: best practice design (practice – design/evaluation; design – specification/implementation.

General Problem: craft design (craft – best practice; design – specification/implementation).

Particular Scope: human-computer interactions to do something as desired, which satisfy user requirements in the form of an interactive system (human – individual/group; computer – interactive/embedded; interactions – active/passive; something – action/task; desired: wanted/needed/experienced/felt/valued; user – human; requirements – needs; satisfied – met/addressed; interactive – active/passive; system – user-computer).

Research: acquires and validates knowledge to support practices (acquires – creates; validates – confirms; knowledge – heuristics/methods/expert advice/successful designs/case-studies).

Knowledge: supports practices (supports – facilitates/makes possible; practices – trial-and-error/implement and test).

Practices: supported by knowledge (supported – facilitated; knowledge – heuristics/methods/expert advice/successful designs/case-studies).

Solution: resolution of a problem (resolution – answer/address; problem – question/doubt).

General Problem: craft design (craft – best practice; design – specification/implementation).

The final framework for an craft approach to HCI follows. It comprises the initial framework (see earlier) and, in addition, key concept definitions (but not clarifications).

Final Framework

The framework (as a basic support structure) is for a discipline (as an academic field of study and branch of knowledge) of HCI (as human-computer interaction) as craft (as best practice).

The framework has a general problem (as craft design) with a particular scope (as  human computer interactions to do something as desired). Research ( as acquisition and validation) acquires (as study and practice) and validates (as confirms) knowledge (as heuristics/methods/expert advice/successful designs/case-studies).

This knowledge supports (facilitates) practices (as trial-and-error and implement and test), which solve (as resolve) the general design problem of craft design.

Read More

This framework for a discipline of HCI as craft is more complete, coherent and fit-for-purpose than the description afforded by the craft approach to HCI (see earlier). The framework thus better supports thinking about and doing craft HCI. As the framework is explicit, it can be shared by all interested researchers. Once shared, it enables researchers to build on each other’s work. This sharing and building is further supported by a re-expression of the framework, as a design research exemplar. The latter specifies the complete design research cycle, which once implemented constitutes a case-study of an of a craft approach to HCI. The diagram, which follows, presents the craft design research exemplar. The empty boxes are not required for the design research exemplar of HCI as Innovation; but are required elsewhere for the design research exemplar of HCI as Engineering. They have been included here for completeness.

Screen shot 2016-01-27 at 10.21.12

Key: Craft Knowledge – heuristics, methods, expert advice, successful designs, case-studies.
EP – empirical practice

                                     Design Research Exemplar – HCI as Craft

 

Framework Extension

The Craft Framework is here expressed at the highest level of description. However, to conduct Craft design research and acquire/validate Craft knowledge etc, as suggested by the exemplar diagram above, lower levels of description are required.

Read More

Examples of such levels are presented here – first a short version and then a long version. Researchers, of course, might have their own lower level descriptions or subscribe to some more generally recognised levels. Such descriptions are acceptable, as long as they fit with the higher level descriptions of the framework and are complete; coherent and fit-for-purpose. In the absence of alternative levels of description, researchers might try the short version first .

These levels go, for example from ‘human’ to ‘user’ and from ‘computer’ to ‘interactive system’. The lowest level, of course, needs to reference the application, in terms of the application itself and the interactive system. Researchers are encouraged to select from the framework extensions as required and to add the lowest level description, relevant to their research. The lowest level is used here to illustrate the extended craft framework.

 

Craft Framework Extension - Short Version

Following the Craft Design Research exemplar diagram, researchers need to specify:  User Requirements (unsatisfied); Craft Research; Craft Knowledge; and Interactive System (satisfying User Requirements).

These specifications require the extended Craft framework to include: the Application; the Interactive System; and Performance, relating the former to the latter. Craft design requires the Interactive System to do something (the Application) as desired (Performance). Craft Research acquires and validates Craft Knowledge to support Craft Design Practices.

The Craft Framework Extension, thus includes: Application; Interactive System; and Performance.

1. Craft Applications

1.1 Objects

Craft applications (the ‘ something’, which the interactive system does) can be described in terms of objects. Objects may be both abstract and physical and are characterised by their attributes. Abstract attributes are those of information and knowledge. Physical attributes are those of energy and matter.

For example, a website application (such as for an academic organisation) can be described for design research purposes in terms of objects; their abstract attributes, supporting the creation of websites; their physical attributes supporting the visual/verbal representation of displayed information on the website pages by means of text and images. Application objects are specified as part of craft design and can be researched as such.

1.2 Attributes and Levels

The attributes of a craft application object emerge at different levels of description. For example, characters and their configuration on a webpage are physical attributes of the object ‘webpage’, which emerge at one level. The message on the page is an abstract attribute, which emerges at a higher level of description.

1.3 Relations between Attributes

Attributes of a craft application object are related in two ways. First, attributes are related at different levels of complexity. Second, attributes are related within levels of description. Such relations are specified as part of craft design.

1.4 Attribute States and Affordance

The attributes of craft application objects can be described as having states. Further, those states may change. For example, the content and characters (attributes) of a website page (object) may change state: the content with respect to meaning and grammar; its characters with respect to size and font. Objects exhibit an affordance for transformation, associated with their attributes’ potential for state change.

1.5 Applications and the Requirement for Attribute State Changes

A craft application may be described in terms of affordances. Accordingly, an object may be associated with a number of applications. The object ‘website’ may be associated within the application as that of site structure (state changes of its organisational attributes) and the  authorship (state changes of its textual and image content). In principle, an application may have any level of generality, for example, the writing of personal pages and the writing of academic pages.

Organisations have applications and require the realisation of the affordance of their associated objects. For example, ‘completing a survey’ and ‘writing for a special group of users’, may each have a website page as their transform, where the pages are objects, whose attributes (their content, format and status, for example) have an intended state. Further editing of those pages would produce additional state changes, and therein, new transforms. Requiring new affordances might constitute an additional (unsatisfied) User Requirement and result in a new Interactive System.

1.6 Application Goals

The requirement for the transformation of craft application objects is expressed in the form of goals. A product goal specifies a required transform – the realisation of the affordance of an object. A product goal supposes necessary state changes of many attributes. The requirement of each attribute state change can be expressed as an application task goal, derived from the product goal.

So, for example, the product goal demanding transformation of a website page, making its messages less complex and so more clear, would be expressed by task goals, possibly requiring state changes of semantic attributes of the propositional structure of the text  and images and of associated syntactic attributes of the grammatical structure. Hence, a product goal can be re-expressed as an application task goal structure, a hierarchical structure expressing the relations between task goals, for example, their sequences. The latter might constitute part of a craft design.

1.7 Craft Application as: Doing Something as Desired

The transformation of an object, associated with a product goal, involves many attribute state changes – both within and across levels of complexity. Consequently, there may be alternative transforms, which satisfy a product goal – website pages with different styles. The concept of ‘doing something as desired’ describes the variance of an actual transform with that specified by a product goal.

1.8 Craft Application and the User

One description of the application then, is of objects, characterised by their attributes, and exhibiting an affordance, arising from the potential changes of state of those attributes. By specifying product goals, users express their requirement for transforms – objects with specific attribute states. Transforms are produced by ‘doing something, as desired’.

From product goals is derived a structure of related task goals, which can be assigned, by craft design practice, either to the user or to the interactive computer (or both) within an associated interactive system. Task goals assigned to the user by craft design are those, intended to motivate the user’s behaviours. The actual state changes (and therein transforms), which those behaviours produce, may or may not be those specified by task and product goals, a difference expressed by the concept ‘as desired’, characterised in terms of: wanted/needed/experienced/felt/valued.

2.Craft Interactive Computers

2.1 Interactive Systems

An interactive system can be described as a behavioural system, distinguished by a boundary enclosing all human and interactive computer behaviours, whose purpose is to achieve and satisfy a common goal. For example, the behaviours of a webmaster, using a website application, whose purpose is to construct websites, constitute an interactive system. Critically, it is only by identifying the common goal, that the boundary of the interactive system can be established and so designed and researched.

Interactive systems transform objects by producing state changes in the abstract and physical attributes of those objects (see 1.1). The webmaster and the website application may transform the object ‘page’ by changing both the attributes of its meaning and the attributes of its layout, both text and images.

The behaviours of the human and the interactive computer are described as behavioural sub-systems of the interactive system – sub-systems, which interact. The human behavioural sub-system is more specifically termed the user. Behaviour may be loosely understood as ‘what the human does’, in contrast with ‘what is done’ (i.e. attribute state changes of application objects).

Although expressible at many levels of description, the user must at least be described at a level, commensurate with the level of description of the transformation of application objects. For example, a webmaster interacting with a website application is a user, whose behaviours include receiving and replying to messages, sent to the website.

2.2 Humans as a System of Mental and Physical Behaviours

The behaviours, constituting an interactive system, are both physical and abstract. Abstract behaviours are generally the acquisition, storage, and transformation of information. They represent and process information, at least concerning: application objects and their attributes, attribute relations and attribute states and the transformations, required by goals. Physical behaviours are related to, and express, abstract behaviours.

Accordingly, the user is described as a system of both mental (abstract) and overt (physical) behaviours. They are related within an assumed hierarchy of behaviour types (and their control), wherein mental behaviours generally determine, and are expressed by, overt behaviours. Mental behaviours may transform (abstract) application objects, represented in cognition or express, through overt behaviour, plans for transforming application objects.

For example, a webmaster has the product goal, required to maintain the circulation of a website newsletter to a target audience. The webmaster interacts with the computer by means of the user interface (whose behaviours include the transmission of information in the newsletter). Hence, the webmaster acquires a representation of the current circulation by collating the information displayed by the computer screen and assessing it by comparison with the conditions, specified by the product goal. The webmaster reasons about the attribute state changes, necessary to eliminate any discrepancy between current and desired conditions of the process, that is, the set of related changes, which will produce and circulate the newsletter, ‘as desired’. That decision is expressed in the set of instructions issued to the interactive computer through overt behaviour – selecting menu options, for example.

2.3 Human-Computer Interaction

Although user and interactive computer behaviours may be described as separable sub-systems of the interactive system, these sub-systems extert a ‘mutual influence’ or interaction. Their configuration principally determines the interactive system and craft design and research.

Interaction is described as: the mutual influence of the user (i.e. behaviours) and the interactive computer (i.e behaviours), associated within an interactive system. For example, the behaviours of a webmaster interact with the behaviours of a website application. The webmaster’s behaviours influence the behaviours of the interactive computer (access the image function), while the behaviours of the interactive computer influence the selection behaviour of the webmaster (among possible image types). The design of their interaction – the webmaster’s selection of the image function, the computer’s presentation of possible image types – determines the interactive system, comprising the webmaster and interactive computer behaviours in their planning and control of webpage creation. The interaction may be the object of craft design and so design research.

The assignment of task goals by design then, to either the user or the interactive computer, delimits the former and therein specifies the design of the interaction. For example, replacement of an inappropriate image, required on a page is a product goal, which can be expressed as a task goal structure of necessary and related attribute state changes. In particular, the field for the appropriate image as an attribute state change in the spacing of the page. Specifying that state change may be a task goal assigned to the user, as in interaction with the behaviours of early image editor designs or it may be a task goal assigned to the interactive computer, as in interaction with the GUI ‘fill-in’ behaviours. Craft design research would be expected to have contributed to the latter . The assignment of the task goal of specification constitutes the design of the interaction of the user and interactive computer behaviours in each case, which in turn may become the object of research.

2.4 Human Resource Costs

‘Doing something as desired’ by means of an interactive system always incurs resource costs. Given the separability of the user and the interactive computer behaviours, certain resource costs are associated with the user and distinguished as behavioural user costs.

Behavioural user costs are the resource costs, incurred by the user (i.e by the implementation of behaviours) to effect an application. They are both physical and mental. Physical costs are those of physical behaviours, for example, the costs of using the mouse and of attending to a  screen display; they may be expressed for craft design purposes as physical workload. Mental behavioural costs are the costs of mental behaviours, for example, the costs of knowing, reasoning, and deciding; they may be expressed for craft design purposes as mental workload. Mental behavioural costs are ultimately manifest as physical behavioural costs.

3. Performance of the Craft Interactive Computer System and the User.

‘To do something as desired’ derives from the relationship of an interactive system with its application. It assimilates both how well the application is performed by the interactive system and the costs incurred by it. These are the primary constituents of ‘doing something as desired’, that is, performance. They can be further differentiated, for example, as wanted/needed/experienced/felt/valued. Desired performance is the object of craft design.

Behaviours determine performance. How well an application is performed by an interactive system is described as the actual transformation of application objects with regard to the transformation, demanded by product goals. The costs of carrying out an application are described as the resource costs, incurred by the interactive system and are separately attributed to the user and the interactive computer.

‘Doing something as desired’ by means of an interactive system may be described as absolute or as relative, as in a comparison to be matched or improved upon. Accordingly, criteria expressing ‘as desired’ may either specify categorical gross resource costs and how well an application is performed or they may specify critical instances of those factors to be matched or improved upon. They are the object of craft design and so of design research.

The common measures of human ‘performance’ – errors and time, are related in this notion of performance. Errors are behaviours, which increase resource costs, incurred in producing a given transform or which reduce the goodness of the transform or both. The duration of user behaviours may (very generally) be associated with increases in behavioural user costs.

 

Craft Framework Extension - Long Version

Following the Craft Design Research exemplar diagram, researchers need to specify: User Requirements (unsatisfied); Craft Research; Craft Knowledge; and Interactive System (satisfying User Requirements).

These specifications require the extended Craft framework to include: the Application; the Interactive System; and Performance, relating the former to the latter. Craft design requires the Interactive System to do something (the Application) as desired (Performance). Craft Research acquires and validates Craft Knowledge to support Craft Design Practice.

The Craft Framework Extension, thus includes: Application; Interactive System; and Performance.

1 Craft Applications

1.1 Objects

Craft applications (the ‘something’ the interactive system ‘does’) can be described as objects. Such applications occur in the need of organisations for interactive systems. Objects may be both abstract and physical and are characterised by their attributes. Abstract attributes are those of information and knowledge. Physical attributes are those of energy and matter.

For example, a website application (such as for an academic organisation) can be described, for design research purposes, in terms of objects; their abstract attributes, supporting the communication of messages; their physical attributes supporting the visual/verbal representation of displayed information by means of language.

1.2 Attributes and Levels

The attributes of a craft application object emerge at different levels of description. For example, characters and their configuration on a webpage are physical attributes of the object ‘webpage’, which emerge at one level. The message on he page is an abstract attribute, which emerges at a higher level of description.

1.3 Relations between Attributes

Attributes of craft application objects are related in two ways. First, attributes are related at different levels of complexity. Second, attributes are related within levels of description.

1.4 Attribute States and Affordance

The attributes of craft application objects can bedescribed as having states. Further, those states may change. For example, the content and characters (attributes) of a website page (object) may change state: the content with respect to meaning and grammar; its characters with respect to size and font. Objects exhibit an affordance for transformation, associated with their attributes’ potential for state change.

1.5 Applications and the Requirement for Attribute State Changes

A craft application may be described in terms of affordances. Accordingly, an object may be associated with a number of applications. The object ‘website’ may be associated within the application as that of site structure (state changes of its organisational attributes) and the authorship (state changes of its textual and image content). In principle, an application may have any level of generality, for example, the writing of personal pages and the writing of academic pages.

Organisations have applications and require the realisation of the affordance of their associated objects. For example, ‘completing a survey’ and ‘writing for a special group of users’, may each have a website page as their transform, where the pages are objects, whose attributes (their content, format and status, for example) have an intended state. Further editing of those pages would produce additional state changes, and therein, new transforms. Requiring new affordances might constitute an additional (unsatisfied) User Requirement and result in a new Interactive System.

1.6 Application Goals

Organisations express the requirement for the transformation of craft application objects in terms of goals. A product goal specifies a required transform – the realisation of the affordance of an object. A product goal generally supposes necessary state changes of many attributes. The requirement of each attribute state change can be expressed as an application task goal, derived from the product goal.

So, for example, the product goal demanding transformation of a website page, making its messages less complex and so more clear, would be expressed by task goals, possibly requiring state changes of semantic attributes of the propositional structure of the text and images and of associated syntactic attributes of the grammatical structure. Hence, a product goal can be re-expressed as an application task goal structure, a hierarchical structure expressing the relations between task goals, for example, their sequences. The latter might constitute part of a craft design.

1.7 Craft Application as: Doing Something as Desired

The transformation of an object, associated with a product goal, involves many attribute state changes – both within and across levels of complexity. Consequently, there may be alternative transforms, which satisfy the same product goal – website pages with different styles, for example, where different transforms exhibit different compromises between attribute state changes of the application object. There may also be transforms, which fail to meet the product goal. The concept of ‘doing something as desired’ describes the variance of an actual transform with that specified by a product goal. It enables all possible outcomes of an application to be equated and evaluated. Such transforms may become the object of craft design and so research.

1.8 Craft Application and the User

Description of the craft application then, is of objects, characterised by their attributes, and exhibiting an affordance, arising from the potential changes of state of those attributes. By specifying product goals, organisations express their requirement for transforms – objects with specific attribute states. Transforms are produced by ‘doing something, as desired’, which occurs only by means of objects, affording transformation and interactive systems, capable of producing a transformation. Novel production may be (part of) a craft design.

From product goals is derived a structure of related task goals, which can be assigned either to the user or to the interactive computer (or both) within the design of an associated interactive system. The task goals assigned to the user are those, which motivate the user’s behaviours. The actual state changes (and therein transforms), which those behaviours produce, may or may not be those specified by task and product goals, a difference expressed by the concept ‘as desired’, characterised in terms of: wanted/needed/experienced/felt/valued.

2.Craft Interactive Computers and the Human

2.1 Interactive Systems

Users are able to conceptualise goals and their corresponding behaviours are said to be intentional (or purposeful). Interactive computers are designed to achieve goals and their corresponding behaviours are said to be intended (or purposive).

An interactive system can be described as a behavioural system, distinguished by a boundary enclosing all human and interactive computer behaviours, whose purpose is to achieve and satisfy a common goal. For example, the behaviours of a webmaster, using a website application, whose purpose is to construct websites, constitute an interactive system. Critically, it is only by identifying the common goal, that the boundary of the interactive system can be established and so designed and researched.

Interactive systems transform objects by producing state changes in the abstract and physical attributes of those objects (see 1.1). The webmaster and the website application may transform the object ‘page’ by changing both the attributes of its meaning and the attributes of its layout, both text and images. More generally, an interactive system may transform an object through state changes, produced in related attributes.

The behaviours of the user and the interactive computer are described as behavioural sub-systems of the interactive system – sub-systems, which interact. The human behavioural sub-system is more specifically termed the user. Behaviour may be loosely understood as ‘what the user does’, in contrast with ‘what is done’ (that is, attribute state changes of application objects). More precisely the user is described as:

a system of distinct and related user behaviours, identifiable as the sequence of states of a user interacting with a computer to do something as desired and corresponding with a purposeful (intentional) transformation of application objects.

Although expressible at many levels of description, the user must at least be described for design research purposes at a level, commensurate with the level of description of the transformation of craft application objects. For example, a webmaster interacting with a website application is a user, whose behaviours include receiving and replying to messages, sent to the website.

2.2 Humans as a System of Mental and Physical Behaviours

The behaviours, constituting an interactive system, are both physical and abstract. Abstract behaviours are generally the acquisition, storage, and transformation of information. They represent and process information, at least concerning: application objects and their attributes, attribute relations and attribute states and the transformations, required by goals. Physical behaviours are related to, and express, abstract behaviours.

Accordingly, the user is described as a system of both mental (abstract) and overt (physical) behaviours, which extend a mutual influence – they are related. In particular, they are related within an assumed hierarchy of behaviour types (and their control), wherein mental behaviours generally determine and are expressed by, overt behaviours. Mental behaviours may transform (abstract) application objects, represented in cognition or express, through overt behaviour, plans for transforming application objects.

For example, a webmaster has the product goal, required to maintain the circulation of a website newsletter to a target audience. The webmaster interacts with the computer by means of the user interface (whose behaviours include the transmission of information in the newsletter). Hence, the webmaster acquires a representation of the current circulation by collating the information displayed by the computer screen and assessing it by comparison with the conditions, specified by the product goal. The webmaster reasons about the attribute state changes, necessary to eliminate any discrepancy between current and desired conditions of the process, that is, the set of related changes, which will produce and circulate the newsletter, ‘as desired’. That decision is expressed in the set of instructions issued to the interactive computer through overt behaviour – selecting menu options, for example.

The user is described as having cognitive, conative and affective aspects. The cognitive aspects are those of knowing, reasoning and remembering; the conative aspects are those of acting, trying and persevering; and the affective aspects are those of being patient, caring and assuring. Both mental and overt user behaviours are described as having these three aspects, all of which may contribute to ‘doing something, as desired wanted/needed/experienced/felt/valued.

2.3 Human-Computer Interaction

Although user and interactive computer behaviours may be described as separable sub-systems of the interactive system, these sub-systems exert a ‘mutual influence’, that is to say they interact. Their configuration principally determines the interactive system and so its design and the associated research into that and other possible designs.

Interaction of the user and the interactive computer behaviours is the fundamental determinant of the interactive system, rather than their individual behaviours per se. Interaction is described as: the mutual influence of the user (i.e. behaviours) and the interactive computer (i.e behaviours), associated within an interactive system. For example, the behaviours of a webmaster interact with the behaviours of a website application. The webmaster’s behaviours influence the behaviours of the interactive computer (access the image function), while the behaviours of the interactive computer influence the selection behaviour of the webmaster (among possible image types). The design of their interaction – the webmaster’s selection of the image function, the computer’s presentation of possible image types – determines the interactive system, comprising the webmaster and interactive computer behaviours in their planning and control of webpage creation. The interaction may be the object of craft design and so design research.

The assignment of task goals by design then, to either the user or the interactive computer, delimits the former and therein specifies the design of the interaction. For example, replacement of an inappropriate image, required on a page is a product goal, which can be expressed as a task goal structure of necessary and related attribute state changes. In particular, the field for the appropriate image as an attribute state change in the spacing of the page. Specifying that state change may be a task goal assigned to the user, as in interaction with the behaviours of early image editor designs or it may be a task goal assigned to the interactive computer, as in interaction with the GUI ‘fill-in’ behaviours. Craft design research would be expected to have contributed to the latter . The assignment of the task goal of specification constitutes the design of the interaction of the user and interactive computer behaviours in each case, which in turn may become the object of research.

2.4 Human On-line and Off-line Behaviours

User behaviours may comprise both on-line and off-line behaviours: on-line behaviours are associated with the interactive computer’s representation of the application; off-line behaviours are associated with non-computer representations of the application.

As an illustration of the distinction, consider the example of an interactive system, consisting of the behaviours of a web secretary and an interactive application. They are required to produce a paper-based copy of a dictated letter, stored on audio tape. The product goal of the interactive system here requires the transformation of the physical representation of the letter from one medium to another, that is, from tape to paper. From the product goal derives the task goals, relating to required attribute state changes of the letter. Certain of those task goals will be assigned to the secretary. The secretary’s off-line behaviours include listening to and assimilating the dictated letter, so acquiring a representation of the application object. By contrast, the secretary’s on-line behaviours include specifying the represention by the interactive computer of the transposed content of the letter in a desired visual/verbal format of stored physical symbols.

On-line and off-line user behaviours are a particular case of the ‘internal’ interactions between a user’s behaviours as, for example, when the secretary’s keying interacts with memorisations of successive segments of the dictated letter.

2.5 Structures and the Human

Description of the user as a system of behaviours needs to be extended, for the purposes of design and design research, to the structures supporting that behaviour.

Whereas user behaviours may be loosely understood as ‘what the human does’, the structures supporting them can be understood as ‘the support for the human to be able to do what they do’. There is a one-to-many mapping between a user’s structures and the behaviours they might support: thus, the same structures may support many different behaviours.

In co-extensively enabling behaviours at each level of description, structures must exist at commensurate levels. The user structural architecture is both physical and mental, providing the capability for a user’s overt and mental behaviours. It provides a represention of application information as symbols (physical and abstract) and concepts, and the processes available for the transformation of those representations. It provides an abstract structure for expressing information as mental behaviour. It provides a physical structure for expressing information as physical behaviour.

Physical user structure is neural, bio-mechanical and physiological. Mental structure consists of representational schemes and processes. Corresponding with the behaviours it supports and enables, user structure has cognitive, conative and affective aspects. The cognitive aspects of user structures include information and knowledge – that is, symbolic and conceptual representations – of the application, of the interactive computer and of the user themselves, and it includes the ability to reason. The conative aspects of user structures motivate the implementation of behaviour and its perseverence in pursuing task goals. The affective aspects of user structures include the personality and temperament, which respond to and support behaviour. All three aspects may contribute to ‘ doing something, as desired wanted/needed/experienced/felt/valued’.

To illustrate this description of mental structure, consider the example of the structures supporting a web user’s behaviours. Physical structure supports perception of the  web page display and executing actions to the web application. Mental structures support the acquisition, memorisation and transformation of information about the pages are annotated, for example. The knowledge, which the user has of the web application and of the interactive computer, supports the collation, assessment and reasoning about the actions required.

The limits of user structures determine the limits of the behaviours they might support. Such structural limits include those of: intellectual ability; knowledge of the application and the interactive computer; memory and attentional capacities; patience; perseverence; dexterity; and visual acuity etc. The structural limits on behaviour may become particularly apparent, when one part of the structure (a channel capacity, perhaps) is required to support concurrent behaviours, perhaps simultaneous visual attending and reasoning behaviours. The user then, is ‘resource-limited’ by the co-extensive user structures.

The behavioural limits of the user, determined by structure, are not only difficult to define with any kind of completeness, they may also be variable, because that structure may change, and in a number of ways. A user may have self-determined changes in response to the application – as expressed in learning phenomena, acquiring new knowledge of the application, of the interactive computer, and indeed of themselves, to better support behaviour. Also, user structures degrade with the expenditure of resources by behaviour, as demonstrated by the phenomena of mental and physical fatigue. User structures may also change in response to motivating or de-motivating influences of the organisation, which maintains the interactive system.

It must be emphasised that the structure supporting the user is independent of the structure supporting the interactive computer behaviours. Neither structure can make any incursion into the other and neither can directly support the behaviours of the other. (Indeed this separability of structures is a pre-condition for expressing the interactive system as two interacting behavioural sub-systems). Although the structures may change in response to each other, they are not, unlike the behaviours they support, interactive; they are not included within the interactive system. The combination of structures of both user and interactive computer, supporting their interacting behaviours is described as the user interface .

2.6 Human Resource Costs

‘Doing something as desired’ by means of an interactive system always incurs resource costs. Given the separability of the user and the interactive computer behaviours, certain resource costs are associated directly with the user and distinguished as structural user costs and behavioural user costs.

Structural user costs are the costs of the user structures. Such costs are incurred in developing and maintaining user skills and knowledge. More specifically, structural user costs are incurred in training and educating users, so developing in them the structures, which will enable the behaviours necessary for an application . Training and educating may augment or modify existing structures, provide the user with entirely novel structures, or perhaps even reduce existing structures. Structural user costs will be incurred in each case and will frequently be borne by the organisation. An example of structural user costs might be the costs of training a secretary to use a web-based GUI interface in the particular style of layout, required for an organisation’s correspondence with its clients and in the operation of the interactive computer by which that layout style can be created.

Structural user costs may be differentiated as cognitive, conative and affective structural costs. Cognitive structural costs express the costs of developing the knowledge and reasoning abilities of users and their ability for formulating and expressing novel plans in their overt behaviour – as necessary for ‘doing something as desired’. Conative structural costs express the costs of developing the activity, stamina and persistence of users as necessary for an application. Affective structural costs express the costs of developing in users their patience, care and assurance as necessary for an application.

Behavioural user costs are the resource costs, incurred by the user (i.e by the implementation of their of behaviours) in recruiting user structures to effect an application. They are both physical and mental resource costs. Physical behavioural costs are the costs of physical behaviours, for example, the costs of making keystrokes on a keyboard and of attending to a  screen display; they may be expressed without differentiation as physical workload. Mental behavioural costs are the costs of mental behaviours, for example, the costs of knowing, reasoning, and deciding; they may be expressed without differentiation as mental workload. Mental behavioural costs are ultimately manifest as physical behavioural costs. Costs are an important aspect of the design of an interactive computer system.

When differentiated, mental and physical behavioural costs are described as the cognitive, conative and affective behavioural costs of the user. Cognitive behavioural costs relate to both the mental representing and processing of information and the demands made on the user’s extant knowledge, as well as the physical expression thereof in the formulation and expression of a novel plan. Conative behavioural costs relate to the repeated mental and physical actions and effort, required by the formulation and expression of the novel plan. Affective behavioural costs relate to the emotional aspects of the mental and physical behaviours, required in the formulation and expression of the novel plan. Behavioural user costs are evidenced in user fatigue, stress and frustration; they are costs borne directly by the user and so need to be taken into account in the design process.

3. Performance of the Craft Interactive Computer System and the User.

‘To do something as desired’ derives from the relationship of an interactive system with its application. It assimilates both how well the application is performed by the interactive system and the costs incurred by it. These are the primary constituents of ‘doing something as desired’, that is performance. They can be further differentiated, for example, as wanted/needed/experienced/felt/valued.

A concordance is assumed between the behaviours of an interactive system and its performance: behaviours determine performance. How well an application is performed by an interactive system is described as the actual transformation of application objects with regard to the transformation, demanded by product goals. The costs of carrying out an application are described as the resource costs, incurred by the interactive system and are separately attributed to the user and the interactive computer. Specifically, the resource costs incurred by the user are differentiated as: structural user costs – the costs of establishing and maintaining the structures supporting behaviour; and behavioural user costs – the costs of the behaviour, recruiting structure to its own support. Structural and behavioural user costs are further differentiated as cognitive, conative and affective costs. Design requires attention to all types of resource costs – both those of the user and of the interactive computer.

‘Doing something as desired’ by means of an interactive system may be described as absolute or as relative, as in a comparison to be matched or improved upon. Accordingly, criteria expressing ‘as desired’ may either specify categorical gross resource costs and how well an application is performed or they may specify critical instances of those factors to be matched or improved upon. They are the object of craft design and so of design research.

Discriminating the user’s performance within the performance of the interactive system would require the separate assimilation of user resource costs and their achievement of desired attribute state changes, demanded by their assigned task goals. Further assertions concerning the user arise from the description of interactive system performance. First, the description of performance is able to distinguish the goodness of the transforms from the resource costs of the interactive system, which produce them. This distinction is essential for design, as two interactive systems might be capable of producing the same transform, yet if one were to incur a greater resource cost than the other, it would be the lesser (in terms of performance) of the two systems.

Second, given the concordance of behaviour with ‘doing something as desired’, optimal user (and equally, interactive computer) behaviours may be described as those, which incur a (desired) minimum of resource costs in producing a given transform. Design of optimal user behaviour would minimise the resource costs, incurred in producing a transform of a given goodness. However, that optimality may only be categorically determined with regard to interactive system performance and the best performance of an interactive system may still be at variance with what is desired of it. To be more specific, it is not sufficient for user behaviours simply to be error-free. Although the elimination of errorful user behaviours may contribute to the best application possible of a given interactive system, that performance may still be less than ‘as desired’. Conversely, although user behaviours may be errorful, an interactive system may still support ‘doing something, as desired’.

Third, the common measures of human ‘performance’ – errors and time, are related in this conceptualisation of performance. Errors are behaviours, which increase resource costs, incurred in producing a given transform or which reduce the goodness of the transform or both. The duration of user behaviours may (very generally) be associated with increases in behavioural user costs.

Fourth, structural and behavioural user costs may be traded-off in the design of an application. More sophisticated user structures, supporting user behaviours, that is, the knowledge and skills of experienced and trained users, will incur high (structural) costs to develop, but enable more efficient behaviours – and therein, reduced behavioural costs.

Fifth, resource costs, incurred by the user and the interactive computer may be traded-off in the design of the performance of an application. A user can sustain a level of performance of the interactive system by optimising behaviours to compensate for the poorly designed behaviours of the interactive computer (and vice versa), that is, behavioural costs of the user and interactive computer are traded-off in the design process. This is of particular importance as the ability of users to adapt their behaviours to compensate for the poor design of interactive computer-based systems often obscures the fact that the systems are poorly designed.

Examples of Craft Frameworks for HCI

Illustration of Craft Framework: Golsteijn et al. – Hybrid Crafting: Towards an Integrated Practice of Crafting with Physical and Digital Components

This paper aims to open up the way for novel means for crafting, which include digital media in integrations with physical construction, here called ‘hybrid crafting’. The research reports the design of ‘Materialise’ – a building set that allows for the inclusion of digital images and audio files in physical constructions by using tangible building blocks, that can display images or play audio files, alongside a variety of other physical components. By reflecting on the findings from subsequently organised workshops, Goldsteijn et al.  provide guidelines for the design of novel hybrid crafting products or systems that address craft context, process and result.

Golsteijn et al: Hybrid Crafting: Towards an Integrated Practice of Crafting with Physical and Digital Components

How well does the Goldsteijn et al. paper meet the requirements for constituting a Craft Framework for HCI? (Read More…..)

Read More.....

Requirement 1: The framework (as a basic support structure) is for a discipline (as an academic field of study and branch of knowledge).

Goldsteijn et al. are clearly concerned with design, both the design of their tool ‘Materialise’ and the crafting designs of the users thereof. However, there is no explicit mention of a superordinate discipline or field of study/branch of knowledge, for example, such as science (as it relates to understanding or engineering, as it relates to design). The design is of human-computer crafting interactions. See Comments 1, 2, 5, 8 and 9.

Requirement 2: The framework is for HCI  (as human-computer interaction) as craft (as best practice).

The paper espouses HCI in the form of human-computer crafting interactions. Further, the development of the tool ‘Materialise’ to support crafting is supported by best practice, both in terms of Goldsteijn et al’s own experience and the application of generic HCI knowledge, for example, the iterative design method used in the tool development (Comments 10 and 13). Even the guidelines proposed can be thought of as their recommended best practice.

Requirement 3: The framework has a general problem (as craft design) with a particular scope (as craft human-computer interactions to do something as desired).

The paper espouses the general problem of craft design in the form of the development of the crafting tool ‘Materialise’. Its particular scope is crafting human-computer interactions to do something as desired (or some-such – see Comment4). Various qualities are associated with crafting as wanted, for example, creativity etc.

Requirement 4: Research ( as acquisition and validation) acquires (as study and practice) and validates (as confirms) knowledge (heuristics/methods/expert advice/successful designs/case-studies).

Goldsteijn et al. are clearly reporting design research and have explicitly formulated questions on the subject (Comment 9). The tool ‘Materialise’ also clearly constitutes HCI design knowledge (case-studies), as does their own enhanced experience and the expert advice, which they offer, in the form of guidelines/heuristics/expert advice (Comments 6 and 9). The tool and the guidelines are explicit, the experience implicit. Although all are ‘acquired’, none has been validated (Comment 14).

Requirement 5: The framework embodies knowledge, which supports (facilitates) practices (as trial and error and implement and test), which solve (as resolve) the general design problem of craft design.

Goldsteijn et al’s tool and guidelines appear intended to support design practices of trial and error and implement and test, much in the manner of the development of the tool itself Comment 10). Such practices, however, are not the object of this particular research and so their successful resolution of the craft design problem remains undemonstrated (Comment 14).

Conclusion: Goldsteijn et al’s paper denies that it is proposing a framework for HCI design or analysis. This is accepted. However, it has many of the required elements of a framework and so could constitute the basis for the development of one. For example, it is clearly committed to design; it contains a detailed  conception of crafting and associated lower-level descriptions in different domains; it employs an (albeit generic) HCI design method; it produces an HCI design tool; and it considers implicit User Requirements (Comments Comments 1, 2, 3, 5, 6, 7, 10, 12 and 14).

Goldsteijn et al’s paper can be considered the basis for the development of a  framework of HCI craft design. Such development would need to include further details concerning: the discipline/field of study of design; its level of description (needs to be higher and to link with the lower-lower descriptions referenced); whether its components are implicit or explicit; and what constitutes its idea of validation, including – conceptualisation; operationalisation; test; and generalisation.

The frameworks proposed here might be useful in any such development.

Application of the Craft Framework to a Craft Approach to HCI Research

Balaam, M., R. Comber, E. Jenkins, S. Sutton and A. Garbett, A. 2015. FeedFinder: a Location-Mapping Mobile Application for Breastfeeding Women.

Balaam et al. (2015)report the design of a location-mapping mobile application for breastfeeding women. The paper constitutes a Craft Approach to HCI research.The research comprises: user-engagement sensitisation; user-centred design; development and in-the-wild deployment. Balaam et al. discuss how mobile technologies can be designed to achieve public health goals.

Balaam, M., R. Comber, E. Jenkins, S. Sutton and A. Garbett, A. 2015. FeedFinder: a Location-Mapping Mobile Application for Breastfeeding Women. 

 

What potential does the Balaam et al. Approach to HCI Craft research offer the Craft Framework, proposed here?

More.....

First, the Framework, as a basic support structure, is for a discipline, as an academic field of study and branch of knowledge.

Potential: Balaam et al’s Craft Approachis concerned with designing. However, there is no explicit commitment to a superordinate discipline or field of study/branch of knowledge, for example, such as Science, as it relates to understanding or Engineering, as it relates to design.

 

Second: the Framework is for HCI, as human-computer interaction, that is, Craft, as best practice.

Potential:Balaam et al’s Craft Approach envisages two ways forward for HCI. The particular form of the research and design practice applied and how notions of consumers, communities and citizens might inform such design. The concepts of craft and best practice are not explicitly identified or addressed by the research.

 

Third, the Framework has a general problem, as craft design with a particular scope, as craft human-computer interactions to do something as desired.

Potential: Balaam et al’s Craft Approach does not refer explicitly to a general design problem. However, they address the particular scope of the breastfeeding application design problem as something desired.

 

Fourth, Research, as acquisition and validation, acquires, as study and practice and validates, as confirms, knowledge, as heuristics/methods/expert advice/successful designs/case-studies.

Potential: Balaam et al’s Craft Approach applies a generic user-centred design method, whose validation is not identified as an aim of the project. In addition, the application of the method is almost certainly informed by the authors’ implicit previous research and design experience.

Fifth, the Framework embodies knowledge, which supports, that is, facilitates practices, as trial and error and implement and test, which solve, as resolve, the general design problem of craft design.

Potential: Balaam et al’s Craft Approach to application design appears to support design practices of trial and error and implement and test. Such practices, however, are not the object of this particular research and so their successful resolution of the craft design problem remains undemonstrated.

 

Conclusion: Balaam et al’s Approach to Craft Design could be further developed with respect to: the associated discipline/field of study of design; its level of description (needs to be higher and to link with the lower-lower descriptions referenced); whether its components are implicit or explicit; and what constitutes its concept of validation.

 

The Craft Framework proposed here is considered to have potential for contributing to such developments.

 

 

Comparison of Key HCI Concepts across Frameworks

To facilitate comparison of key HCI concepts across frameworks, the concepts are presented next, grouped by framework category Discipline; HCI; Framework Type; General Problem; Particular Scope; Research; Knowledge; Practices and Solution.

 

Discipline

Discipline

Innovation – an academic field of study/branch of knowledge (academic – scholarly; field of study – subject area; branch of knowledge – division of information/learning).

Art – an academic field of study/branch of knowledge (academic – scholarly; field of study – subject area; branch of knowledge – division of information/learning).

Craft – an academic field of study/branch of knowledge (academic – scholarly; field of study – subject area; branch of knowledge – division of information/learning).

Applied – an academic field of study/branch of knowledge (academic – scholarly; field of study – subject area; branch of knowledge – division of information/learning).

Science – Discipline: an academic field of study/branch of knowledge (academic – scholarly; field of study – subject area; branch of knowledge – division of information/learning).

Engineering – an academic field of study/branch of knowledge (academic – scholarly; field of study – subject area; branch of knowledge – division of information/learning).

 

HCI

HCI

Innovation – human-computer interaction (human – individual/group; computer – interactive/embedded; interaction – active/passive).

Art – human-computer interaction (human – individual/group; computer – interactive/embedded; interaction – active/passive).

Craft – human-computer interaction (human – individual/group; computer – interactive/embedded; interaction – active/passive).

Applied – human-computer interaction (human – individual/group; computer – interactive/embedded; interaction – active/passive).

Science – human-computer interaction (human – individual/group; computer – interactive/embedded; interaction – active/passive).

Engineering – human-computer interaction (human – individual/group; computer – interactive/embedded; interaction – active/passive).

 

Framework Type

Framework Type

Innovation – Innovation: novel (novel – new ideas/methods/devices etc)

Art – Art: creative expression corresponding to some ideal or criteria (creative – imaginative, inventive); (expressive – showing by taking some form); ideal – visionary/perfect); criterion – standard).

Craft – Craft: best practice design (practice – design/evaluation; design – specification/implementation).

Applied – Applied: application of other discipline knowledge (application – addition to/prescription; discipline – academic field/branch of knowledge; knowledge – information/learning).

Science – understanding (explanation/prediction)

Engineering – design for performance (design – specification/implementation; performance – how well effected).

 

General Problem

General Problem

Innovation – innovation design (innovation – novelty; design – specification/implementation).

Art – art design (art – ideal creative expression; design – specification/implementation).

Craft – craft design (craft – best practice; design – specification/implementation).

Applied – applied design (applied – added/prescribed; design – specification/implementation).

Science – understanding human-computer interactions (understand – explanation/prediction; human – individual/group; computer – interactive/embedded; interaction – active/passive)

Engineering – engineering design (engineering – design for performance; design – specification/implementation).

 

Particular Scope

Particular Scope

Innovation – innovative human-computer interactions to do something as desired (innovative – novel; human – individual/group; computer – interactive/embedded; interactions – active/passive; something – action/task; desired: wanted/needed/experienced/felt/valued).

Art – art human-computer interactions to do something as desired (art – creation/expression; human – individual/group; computer – interactive/embedded; interactions – active/passive; something – action/task); desired: wanted/needed/experienced/felt/valued).

Craft – human-computer interactions to do something as desired, which satisfy user requirements in the form of an interactive system (human – individual/group; computer – interactive/embedded; interactions – active/passive; something – action/task; desired: wanted/needed/experienced/felt/valued; user – human; requirements – needs; satisfied – met/addressed; interactive – active/passive; system – user-computer).

Applied – human-computer interactions to do something as desired, which satisfy user requirements in the form of an interactive system (human – individual/group; computer – interactive/embedded; interactions – active/passive; something – action/task; desired: wanted/needed/experienced/felt/valued; user – human; requirements – needs; satisfied – met/addressed; interactive – active/passive; system – user-computer).

Science – human-computer interactions to do something as desired (human – individual/group; computer – interactive/embedded; interactions – active/passive; something – action/task; desired: wanted/needed/experienced/felt/valued.

Engineering – human-computer interactions to perform tasks effectively as desired (human – individual/group; computer – interactive/embedded; interactions – active/passive; perform – effect/carry out; tasks – actions; desired – wanted/needed/experienced/felt/valued).

 

Research

Research

Innovation – acquires and validates knowledge to support practices (acquires – creates; validates – confirms; knowledge – patents/expert advice/experience/examples).

Art – acquires and validates knowledge (acquires – creates by study/practice; validates – confirms; knowledge – experience/expert advice/other artefacts.

Craft – acquires and validates knowledge to support practices (acquires – creates; validates – confirms; knowledge – heuristics/methods/expert advice/successful designs/case-studies).

Applied – acquires and validates knowledge to support practices (acquires – creates; validates – confirms; knowledge – heuristics/methods/expert advice/successful designs/case-studies).

Science – acquires and validates knowledge to support practices (acquires – creates; validates – confirms; knowledge – theories/models/laws/data/hypotheses/analytical and empirical methods and tools; practices – explanation/prediction).

Engineering – acquires and validates knowledge to support practices (acquires – creates; validates – confirms; knowledge – design guidelines/models and methods/principles – specific/ general and declarative/methodological).

 

Knowledge

Knowledge

Innovation – supports practices (supports – facilitates/makes possible; practices – trial-and-error/implement and test).

Art – supports practices (supports – facilitates/makes possible; practices – trial and error/implement and test).

Craft – supports practices (supports – facilitates/makes possible; practices – trial-and-error/implement and test).

Applied – supports practices (supports – facilitates/makes possible; practices – trial-and-error/apply and test).

Science – supports practices (supports – facilitates/makes possible; practices – explanation/prediction).

Engineering – supports practices (supports – facilitates/makes possible; practices – diagnose design problems/prescribe design solutions).

 

Practices

Practices

Innovation – supported by knowledge (supported – facilitated; knowledge – patents/expert advice/experience/examples).

Art – supported by knowledge (supported – facilitated/made possible; knowledge – experience/expert advice/other artefacts).

Craft – supported by knowledge (supported – facilitated; knowledge – heuristics/methods/expert advice/successful designs/case-studies).

Applied – supported by knowledge (supported – facilitated; knowledge – guidelines; heuristics/methods/expert advice/successful designs/case-studies).

Science – supported by knowledge (supported – facilitated; knowledge – theories/models/laws/data/hypotheses/analytical and empirical methods and tools ).

Engineering – supported by knowledge (supported – facilitated; knowledge – design guidelines/models and methods/principles – specific/ general and declarative/methodological).

 

Solution

Solution

Innovation – resolution of a problem (resolution – answer/address; problem – question/doubt).

Art – resolution of the general problem (resolution – answer/address; problem – question/doubt).

Craft – resolution of a problem (resolution – answer/address; problem – question/doubt).

Applied – resolution of a problem (resolution – answer/address; problem – question/doubt).

Science – resolution of a problem (resolution – answer/address; problem – question/doubt).

Engineering – resolution of a problem (resolution – answer/address; problem – question/doubt).